Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 14: 996119, 2023.
Article in English | MEDLINE | ID: covidwho-2255971

ABSTRACT

One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.


Subject(s)
COVID-19 , Receptors, Aryl Hydrocarbon , Mice , Animals , Humans , Immunoglobulin Heavy Chains/genetics , Cues , SARS-CoV-2/metabolism
2.
Pathology ; 55(Supplement 1):S28, 2023.
Article in English | EMBASE | ID: covidwho-2236398

ABSTRACT

Background: Impaired generation of antibody responses define 'predominantly antibody immuno-deficiencies' (PAD) with reduced IgG and impaired vaccination responses. However, the antibody repertoire defects underpinning PAD are unknown. Here, we examine the antibody repertoire using mass spectrometry-based proteomics (MS-proteomics) in PAD and healthy controls (HC). Method(s): Following SARS-CoV-2 vaccination, anti -S1 ELISA, and live-virus neutralisation assays were assessed. Purified anti-S1 IgG and IgM was sequenced by MS-Proteomics to define immunoglobulin heavy chain variable region subfamily (IGHVsf) usage and somatic hypermutation (SHM). Result(s): 12 vaccine responsive PAD subjects were included, matched to 11 HC. Neutralisation and anti-S1 titres were reduced in PAD. Strikingly, all PAD subjects demonstrated restricted IgG IGHVsf utilisation, [median 3, (range 2-4), vs 6 (5-11) in HC, p<0.001], irrespective neutralisation or total antibody response. IgG SHM and IgM repertoire did not differ but IgG IGHV 3-7 utilisation was less frequent in PAD. Conclusion(s): MS proteomics uncovers stereotyped anti-S1 IgG IGHVsf restriction in PAD subjects following vaccination. Our results suggest that a relatively pauci-clonal antibody repertoire can produce a functional immune response, otherwise masked by traditional serology measures. Further studies to uncover the determinants of antibody repertoire breadth and elaborate on this novel approach to assessing serological responses are required. Copyright © 2022

3.
Blood ; 138(SUPPL 1):1549, 2021.
Article in English | EMBASE | ID: covidwho-1770204

ABSTRACT

Introduction: TG-1701 is an irreversible, selective, novel Bruton's tyrosine kinase inhibitor (BTKi) administered once daily (QD). BTK inhibitors, as well as the U2 combination (anti-CD20 mAb ublituximab + the PI3Kδ-CK1ϵ inhibitor umbralisib), are highly efficacious in chronic lymphocytic leukemia (CLL), each of which have been previously demonstrated to be superior over standard chemoimmunotherapy. Treatment with a more selective BTK inhibitor could result in improved efficacy and safety outcomes compared with ibrutinib (ALPINE study, EHA 2021), and we hypothesized that dual blockade of the B-cell receptor (BCR) pathway through combination of TG-1701 with U2 may confer greater depth of response compared to either regimen alone. Methods: Patients with CLL and non-Hodgkin lymphoma (NHL) were enrolled in an ongoing Phase 1 study. After characterizing the safety profile of TG-1701 monotherapy, a parallel dose escalation arm of TG-1701+U2 was implemented. Select dose levels of TG-1701 monotherapy and TG-1701+U2 were also expanded. All patients were treated until disease progression, unacceptable toxicity, or investigator/patient decision to withdraw. Safety was evaluated in all treated patients, and efficacy was evaluated in all treated patients who had at least 1 post-baseline assessment. TG-1701 monotherapy data were previously presented;herein we present data from the TG-1701+U2 dose escalation/expansion and the TG-1701 monotherapy CLL expansion cohorts Results: As of July 2021, 142 patients were treated with TG-1701, 36 of whom were enrolled in the TG-1701+U2 arm. The median # of prior therapies across all treated patients was 1 (range, 0-10) and all patients were BTKi-naïve. Among the 36 patients treated with U2+1701, 19 were evaluable for efficacy and safety (17 too early to evaluate). The median age was 69 years (range 47-81), and 56% were male. TG-1701+U2 was well tolerated at 4 different dose levels without dose-limiting toxicities. The most common (>30%) all-causality, all grade treatment-emergent adverse events (TEAEs) were diarrhea (53%) contusion (42%), nausea (37%), hypertension, ALT/AST increase, and fatigue (all 32% each) with TG-1701+U2. Grade 3/4 AEs >15% were limited to ALT/AST increase (21%). Dose reduction occurred in 1 patient due to an AE, and 4 patients discontinued at least 1 study drug due to an AE: 2 discontinued umbralisib, 1 discontinued umbralisib and TG-1701, and 1 discontinued all 3 agents. At the data cut-off, overall response rate (ORR) was 84% (4 CR and 12 PR) among 19 evaluable patients, with remaining patients awaiting post-baseline assessment. In the monotherapy CLL-specific cohorts (200 mg QD, n=20;and 300 mg QD, n=20), 40 pts were evaluable for safety, and 39 for efficacy (1 pt withdrew due to COVID prior to first response assessment). The median age was 71 (range 49-86), and 43% were male. The most common TEAEs were increased ALT/AST (all grades: 18%;grade ≥3: 3%), followed by diarrhea (all grades: 15%;grade ≥3: none), and neutropenia (all grades: 13%;grades ≥3: 13%). There were no cases of atrial fibrillation, major bleeding, or ventricular tachyarrhythmia in the CLL cohorts at a median follow-up of 12.8 months (range 2.5 - 20.8). TEAEs leading to TG-1701 dose reduction occurred in 1 (3%) patient. No patients in the 200 mg or 300 mg CLL cohorts have discontinued due to AEs. In patients with anemia and thrombocytopenia at baseline, sustained improvement in hematologic variables was observed. The ORR among 39 patients was 97% (all PR/PR-L). Lymphocytosis resolved to normal value or <50% of baseline in 69% (24 of 35 of patients with lymphocytosis). Consistent response rates were observed across all subgroups, including the following high-risk genomic features: del17p/TP53 mutations, unmutated immunoglobulin heavy-chain variable-region (IGHV), and complex karyotype (defined as 3 ≤cytogenetic abnormalities). The median duration of response has not been reached in either cohort. Best change in tumor burden from baseline in patients with CLL is presented in Figure 1. C nclusions: TG-1701 exhibits an encouraging safety and efficacy profile as monotherapy in patients with CLL and additionally shows promising activity and a manageable tolerability profile in combination with U2. Future registration trials are being planned in CLL with TG-1701. Recruitment to this study (NCT03671590) continues. (Figure Presented).

4.
Leukemia and Lymphoma ; 62(SUPPL 1):S40-S42, 2021.
Article in English | EMBASE | ID: covidwho-1747051

ABSTRACT

Introduction: TG-1701 is a selective, covalent BTK inhibitor administered once daily (QD). Both the 'U2' combination (anti-CD20 mAb ublituximab+the PI3Kd-CK1e inhibitor umbralisib) and BTK inhibitors are highly efficacious in treatment- naïve (TN) and relapsed/refractory (R/R) CLL, each having previously demonstrated superiority over standard chemoimmunotherapy. Here, we report results for patients treated with TG-1701 alone or in combination with U2 from an ongoing Phase 1 study, with a focus on patients with CLL. Methods: Patients with R/R CLL and B-cell non-Hodgkin lymphoma were enrolled in an ongoing Phase 1 study initially evaluating dose escalation (DE) of oral TG-1701 QD continuously administered in 28-day cycles (100, 200, 300, and 400 mg). After characterizing the safety profile of TG-1701 monotherapy, we implemented a parallel DE arm of TG-1701+U2. Select dose levels of TG-1701 monotherapy were also expanded. All patients were treated until disease progression, unacceptable toxicity, or investigator/patient decision to withdraw. Safety was evaluated in all treated patients, and efficacy was evaluated in all treated patients with CLL who had at least 1 post-baseline assessment. Results: As of 30 April 2021, 125 patients were treated with TG-1701, 49 of whom had CLL. Enrollment was: 25 patients in the monotherapy DE arm (6 with CLL), 61 in the 200-mg disease-specific cohorts (20 CLL [5 TN], 21 mantle cell lymphoma [MCL, 4 TN], 20 Waldenström's macroglobulinemia [WM, 8 TN]), 20 in the 300-mg CLL cohort (4 TN), and 19 in the 1701+U2 DE arm (3 with CLL). Patients with MCL or WM in the 200-mg disease-specific cohorts were excluded from this analysis. The median # of prior therapies among CLL patients was 1 (range, 0-5) and all patients were BTKi-naïve. TG-1701 was well-tolerated and the maximum tolerated dose for monotherapy was not reached up to 400mg (near 100% saturation of the BTK at all dose levels studied). In the DE arms, the most common all-causality treatment-emergent adverse events (TEAE) were constipation (32%), increased ALT (28%), bruising (28%), and upper respiratory tract infection (28% of patients) with TG-1701 monotherapy;diarrhea (53%) and bruising (42%) with TG-1701+U2. Grade 3/4 AEs were limited. In the CLL-specific cohorts, the most common TEAE was increased ALT/AST (all grades, 17.5%;grade 3, 2.5%;grade ≥4, none), followed by diarrhea (all grades, 12.5%;grade ≥3, none), and COVID-19 (all grades, 12.5%;grade 3-4, none;grade 5, 7.5%). There were no cases of atrial fibrillation, major bleeding, or ventricular tachyarrhythmia in the CLL cohorts at a median follow-up of 10.5 months. TEAEs leading to TG-1701 dose reduction occurred in 7.5% of patients. TEAEs leading to treatment discontinuation occurred in 7.5% of patients (all COVID-19). At the data cut-off, 48 patients with CLL were evaluable for response, including nine in DE. ORR was 95.6% for TG-1701 monotherapy (all PR/PR-L) and 100% for TG-1701+U2 (all PR). The median duration of response has not been reached in either cohort. The best change from baseline in tumor burden in patients with CLL is presented in Figure 1, and treatment exposure and response duration data are presented in Figure 2 below. In patients with anemia and thrombocytopenia at baseline, sustained improvement in hematologic variables was observed in the 200- and 300-mg cohorts. Lymphocytosis was observed in 70% of the monotherapy patients, with a resolution to normal or <50% of baseline in 57.1%. Consistent response rates were observed across all subgroups, including age and high-risk genomic features, such as del17p/TP53, unmutated immunoglobulin heavy-chain variable-region (IGHV), and complex karyotype (defined as three or more cytogenetic abnormalities). Time to event data will be reported at the time of presentation. Conclusions: TG-1701 exhibits an encouraging safety and efficacy profile in patients with CLL, with promising activity and a manageable tolerability profile as monotherapy and in combination with U2 (Figure 1). Future registration trials ar being planned in CLL with TG-1701. Recruitment to this study (NCT03671590) continues.

5.
Scand J Immunol ; 95(5): e13151, 2022 May.
Article in English | MEDLINE | ID: covidwho-1714317

ABSTRACT

Rheumatoid arthritis (RA) patients present higher risk of SARS-CoV-2 infection (COVID-19), and proper management of the disease in this population requires a better understanding of how the immune system controls the virus. We analyzed the T cell and B cell phenotypes, and their repertoire in a pair of monozygotic twins with RA mismatched for COVID-19 infection. Twin- was not infected, while Twin+ was infected and effectively controlled the infection. We found no significant changes on the αß T cell composition, while γδ T cells and B cells presented considerable expansion of memory population in Twin+ and robust T/B cell responses to several SARS-CoV-2 peptides. T cell receptor ß/γ-chain and immunoglobulin heavy chain next-generation sequencing depicted a remarkable higher diversity in Twin+ compared with Twin-, despite no significant changes being found in variable/joining family usage. Repertoire overlap analyses showed that, although being identical twins, very few clones were shared between them, indicating that COVID-19 may lead to deep changes on the immune cell repertoire in RA patients. Altogether, our results indicate that RA patients may develop robust and persistent COVID-19-specific T/B cell responses; γδ T cells and B cells may play a key role in the management of COVID-19 in RA, and the infection may lead to a profound reshaping of immune cell receptor specificities.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Diseases in Twins/genetics , Humans , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta , SARS-CoV-2 , T-Lymphocytes , Twins, Monozygotic/genetics
6.
Blood ; 138:2626, 2021.
Article in English | EMBASE | ID: covidwho-1582154

ABSTRACT

Background: Dysfunction of T cells, NK cells and other immune subsets is common in patients (pts) with CLL. Venetoclax (VEN), a BCL-2 inhibitor and obinutuzumab (OBIN), a CD20 monoclonal antibody (mAb) are approved for pts with CLL (Fischer, NEJM 2019). Atezolizumab, a PD-L1 checkpoint inhibitor (CPI), is approved for melanoma, lung cancer and other solid tumors. Preclinical studies showed synergy of VEN and CD20 mAb with CPI (Kohlhapp, Cancer Discovery 2021;Westin, Lancet Oncology 2014). Clinical studies showed activity of PD1 inhibition in pts with Richter's transformation, but not CLL (Ding, Blood 2017;Jain, ASH 2018). To our knowledge, no prior study has evaluated PD-L1 inhibition in pts with CLL, nor combined CPI, VEN and OBIN. We hypothesized that combined VEN, OBIN and atezolizumab will be synergistic. Methods: This is an investigator-initiated Phase II trial of combined VEN, OBIN and atezolizumab in pts with previously untreated CLL meeting 2008 IWCLL treatment criteria (NCT02846623). Eligibility criteria included age ≥18 years, adequate organ function (total bilirubin ≤1.5 x ULN, ALT and AST ≤2.5 x ULN, creatinine ≤1.5 x ULN). OBIN was given at a flat dose of 100mg IV Cycle (C)1 Day (D)1, 900 mg C1D2, 1000mg on C1D8, 1000mg on C1D15 and then 1000mg on C2-9 D1. Atezolizumab was given at a flat dose of 1680 mg IV (split over 2 days) on C1D3-4 and then C2-9D1-2. VEN was initiated at the start of C3 with the weekly dose-escalation (20mg daily to a target dose of 400mg daily) and continued daily until end of C14 (total 12 cycles of VEN). All pts stopped therapy at the end of C14. Response assessments were done with CT imaging and bone marrow aspirate/biopsy with MRD assessment (multi-color flow cytometry;sensitivity 10 -4) at the end of C2 (prior to VEN initiation), end of C6, end of C9, and end of C14. Results: From July 2019 to December 2020, a total of 26 pts were enrolled. The median age was 60 years (range, 21-74). The baseline characteristics are shown in Table 1. A total of 19/26 (73%) had unmutated IGHV gene. Though the study did not restrict pts with del(17p) or mutated TP53, no pt in the current cohort had del(17p)/ mutated TP53. A total of 14 (54%) pts had a baseline lymph node >5cm. The median follow-up is 13.3 months. One pt came off study in C1 (details below). A total of 25 pts initiated VEN. The TLS risk categories at the start of C1 were high (n=9, 36%), medium (n=12, 48%), and low (n=4, 16%). After 2 cycles of OBIN and atezolizumab (prior to VEN initiation), the majority of pts had downgrading of TLS risk category [high (n=2, 8%), medium (n=3, 12%), and low (n=20, 80%)]. After C6 (about 3 cycles of VEN 400mg daily), bone marrow undetectable (U)-MRD rate was 19/25 (76%);4/25 (16%) had low+ MRD and 2/25 (8%) had high+ MRD. After C9 (about 6 cycles of VEN 400mg daily), among the 21 pts (4 pts have not reached this time-point), the bone marrow U-MRD rate was 18/21 (86%);2/21 (10%) had low+ MRD and 1/21 (5%) had high+ MRD. A total of 14 pts completed C14 (9 pts have not reached this time-point;2 pts came off study prior to completing C14, details below);13/14 (93%) achieved bone marrow U-MRD and 1/14 (7%) has low+ MRD. No patient had disease progression or MRD relapse so far. One pt died (details below). Three pts came off study (one developed retroperitoneal hematoma after receiving enoxaparin for DVT in C1;one developed CPI-induced colitis and removed from the study in C10;one died from COVID-19 pneumonia in C14 while in bone marrow U-MRD remission). Grade 3-4 neutropenia occurred in 14/26 (54%) pts. Grade 3 thrombocytopenia occurred in 5/26 (19%) pts;no pt had G4 thrombocytopenia. A total of 4 pts developed CPI-induced toxicities (colitis, G3, n=1;mucositis, G3, n=1;nephritis, G2, n=1;myositis, G2, n=1). A total of 10/25 (40%) pts had dose reduction of VEN, the majority due to neutropenia. Atezolizumab was discontinued early in 3 pts due to CPI-induced toxicities. Laboratory correlative studies including scRNAseq and CyTOF are ongoing. Conclusions: Treatment with combined VE , OBIN and atezolizumab leads to high rate of early U-MRD remission with 76% bone marrow U-MRD remission at the end of C6 (about 3 cycles of VEN 400mg daily). Four pts had CPI-induced toxicities. The enrollment in this trial continues and updated data and correlative studies will be presented at the ASH meeting. [Formula presented] Disclosures: Jain: Pfizer: Research Funding;Bristol Myers Squibb: Honoraria, Research Funding;Precision Biosciences: Honoraria, Research Funding;Aprea Therapeutics: Research Funding;AstraZeneca: Honoraria, Research Funding;Servier: Honoraria, Research Funding;Incyte: Research Funding;Pharmacyclics: Research Funding;Genentech: Honoraria, Research Funding;AbbVie: Honoraria, Research Funding;TG Therapeutics: Honoraria;Janssen: Honoraria;Beigene: Honoraria;Fate Therapeutics: Research Funding;Adaptive Biotechnologies: Honoraria, Research Funding;Cellectis: Honoraria, Research Funding;ADC Therapeutics: Honoraria, Research Funding. Ferrajoli: Janssen: Other: Advisory Board;AstraZeneca: Other: Advisory Board, Research Funding;BeiGene: Other: Advisory Board, Research Funding. Yilmaz: Daiichi-Sankyo: Research Funding;Pfizer: Research Funding. Thompson: AbbVie: Other: Institution: Advisory/Consultancy, Honoraria, Research Grant/Funding;Gilead: Other: Institution: Advisory/Consultancy, Honoraria;Janssen: Consultancy, Honoraria;Pharmacyclics: Other: Institution: Advisory/Consultancy, Honoraria, Research Grant/Funding;Adaptive Biotechnologies: Other: Institution: Advisory/Consultancy, Honoraria, Research Grant/Funding, Expert Testimony;Genentech: Other: Institution: Advisory/Consultancy, Honoraria, Research Grant/Funding;Amgen: Other: Institution: Honoraria, Research Grant/Funding. Konopleva: Novartis: Other: research funding pending, Patents & Royalties: intellectual property rights;Reata Pharmaceuticals: Current holder of stock options in a privately-held company, Patents & Royalties: intellectual property rights;Eli Lilly: Patents & Royalties: intellectual property rights, Research Funding;KisoJi: Research Funding;Stemline Therapeutics: Research Funding;Sanofi: Other: grant support, Research Funding;Rafael Pharmaceuticals: Other: grant support, Research Funding;AstraZeneca: Other: grant support, Research Funding;Cellectis: Other: grant support;F. Hoffmann-La Roche: Consultancy, Honoraria, Other: grant support;Calithera: Other: grant support, Research Funding;Ascentage: Other: grant support, Research Funding;Ablynx: Other: grant support, Research Funding;Genentech: Consultancy, Honoraria, Other: grant support, Research Funding;Forty Seven: Other: grant support, Research Funding;AbbVie: Consultancy, Honoraria, Other: Grant Support, Research Funding;Agios: Other: grant support, Research Funding. Neelapu: Takeda Pharmaceuticals and related to cell therapy: Patents & Royalties;Kite, a Gilead Company, Bristol Myers Squibb, Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics (Cogent Biosciences), Allogene, Precision BioSciences, Acerta and Adicet Bio: Research Funding;Kite, a Gilead Company, Merck, Bristol Myers Squibb, Novartis, Celgene, Pfizer, Allogene, Kuur, Incyte, Precision BioSciences, Legend, Adicet Bio, Calibr, and Unum Therapeutics: Other: personal fees;Kite, a Gilead Company, Merck, Bristol Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences, Legend Biotech, Adicet Bio, Calibr, Unum Therapeutics and Bluebird Bio: Honoraria. Takahashi: Symbio Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees;Celgene/BMS: Consultancy;Novartis: Consultancy;GSK: Consultancy. Burger: TG Therapeutics: Other: Travel/Accommodations/Expenses, Research Funding, Speakers Bureau;Beigene: Research Funding, Speakers Bureau;Novartis: Other: Travel/Accommodations/Expenses, Speakers Bureau;Pharmacyclics LLC: Consultancy, Other: Travel/Accommodations/Expenses, Research Funding, Speakers Bureau;Gilead: Consultancy, Other: Travel/Accommodations/Expenses, Rese rch Funding, Speakers Bureau;AstraZeneca: Consultancy;Janssen: Consultancy, Other: Travel/Accommodations/Expenses, Speakers Bureau. Khoury: Stemline Therapeutics: Research Funding;Kiromic: Research Funding;Angle: Research Funding. Kantarjian: Jazz: Research Funding;NOVA Research: Honoraria;Novartis: Honoraria, Research Funding;KAHR Medical Ltd: Honoraria;Precision Biosciences: Honoraria;Amgen: Honoraria, Research Funding;Astra Zeneca: Honoraria;AbbVie: Honoraria, Research Funding;Ipsen Pharmaceuticals: Honoraria;Pfizer: Honoraria, Research Funding;Astellas Health: Honoraria;Aptitude Health: Honoraria;Taiho Pharmaceutical Canada: Honoraria;Immunogen: Research Funding;Daiichi-Sankyo: Research Funding;BMS: Research Funding;Ascentage: Research Funding. Wierda: Karyopharm: Research Funding;Miragen: Research Funding;Acerta Pharma Inc.: Research Funding;Cyclacel: Research Funding;Oncternal Therapeutics, Inc.: Research Funding;Pharmacyclics LLC, an AbbVie Company: Research Funding;Sunesis: Research Funding;Juno Therapeutics: Research Funding;Gilead Sciences: Research Funding;AstraZeneca: Research Funding;Genentech: Research Funding;Loxo Oncology, Inc.: Research Funding;Janssen: Research Funding;Xencor: Research Funding;GSK/Novartis: Research Funding;KITE Pharma: Research Funding;Genzyme Corporation: Consultancy;AbbVie: Research Funding. OffLabel Disclosure: Atezolizumab is not approved for CLL

7.
Immunity ; 53(2): 442-455.e4, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-626455

ABSTRACT

We profiled adaptive immunity in COVID-19 patients with active infection or after recovery and created a repository of currently >14 million B and T cell receptor (BCR and TCR) sequences from the blood of these patients. The B cell response showed converging IGHV3-driven BCR clusters closely associated with SARS-CoV-2 antibodies. Clonality and skewing of TCR repertoires were associated with interferon type I and III responses, early CD4+ and CD8+ T cell activation, and counterregulation by the co-receptors BTLA, Tim-3, PD-1, TIGIT, and CD73. Tfh, Th17-like, and nonconventional (but not classical antiviral) Th1 cell polarizations were induced. SARS-CoV-2-specific T cell responses were driven by TCR clusters shared between patients with a characteristic trajectory of clonotypes and traceability over the disease course. Our data provide fundamental insight into adaptive immunity to SARS-CoV-2 with the actively updated repository providing a resource for the scientific community urgently needed to inform therapeutic concepts and vaccine development.


Subject(s)
Coronavirus Infections , Cytokines , High-Throughput Nucleotide Sequencing , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL